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Abstract— Time-series models play an important role in the 

research of economics and finance. The QBN-based walk is a 

new quantum walk model recently introduced in terms of 

quantum Bernoulli noise. In this paper, we construct a 

time-series model based on the QBN-based walk and illustrate 

its basic properties. 

 

Index Terms— Time-series; Quantum walk; Quantum 

Bernoulli noise 
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I. INTRODUCTION 

  As quantum analogs of the classical random walk, 

quantum walks (also known as quantum random walks) 

were introduced in 1993 and have been extensively studied 

since around 2000 (see, e.g [1, 3]). Due to their non-classical 

properties (for example, ballistic spreading, anti-bell shaped 

limit density, and localization),quantum walks have found 

wide application in many fields such as quantum 

information, quantum computing, and biological systems 

(see, e.g. [5, 6] and references therein). On the other hand, 

time-series models such as the ARMA or GARCH play an 

important role in the research of eco- nomics and finance 

[2].  Recently,  by  using quantum walks with finite number 

degrees   of freedom, Konno [4] has introduced a new 

time-series model and shown its interesting properties. 

Quantum Bernoulli noise is the family of 

annihilation and creation operators acting on Bernoulli 

functionals, which satisfy the anti-commutation 

relations (ACR) in equal time, and can provides an 

approach to the effects of environment on an open 

quantum system. In 2016, a quantum walk model with 

infinitely many degrees of freedom, which will be called 

the QBN-based walk below, was introduced in terms of 

quantum Bernoulli noise [9]. It has been shown [9] that 

the QBN-based walk exhibits a rather classical behavior 

in the limit, which makes it different from the usual 

quantum walks with finite number degrees of freedom. 

In this paper, motivated by the recent work of Konno 

[4], we would like to construct a time-series model in 

terms of the QBN-based walk and illustrate its basic 

properties.Throughout this paper, Z always denotes 

thesetof all integers, while N means the Set of all 

nonnegative integers. We denote by Γ the finite power set of 

N, namely 
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Γ = { σ | σ ⊂ N and # σ < ∞ }, (1.1) 

where #σ means the cardinality of σ. Unless otherwise 

stated, letters like j, k and n stand for nonnegative integers, 

namely elements of N. 

II. THE QBS-BASED WALK 

In this section, we briefly recall quantum Bernoulli noise [7], 

and the quantum walk introduced in [9], namely the 

QBN-based walk mentioned above. 

 

2.1 Quantum Bernoulli noise 
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Let  be the  -field on  generated by the sequences 

 
0nn ,and  

0nnp a given sequences of positives numbers 
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a unique probability measure P on   such that 
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for    kjNn jj  11,1, with 
ji nn  when ji   

and .1 kwithNk Thus one has a probability 

measure space  P，， ,which is referred to as  the 

Bernoulli space and random variables on it are known 

as Bernoulli functionals. 

Let  
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
nnn ZZ be the sequences of Bernoulli 

functionals defined by  
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where nn pq 1 .Clearly  
0


nnn ZZ is an 

independent  sequence of random variables on the 

probability measure space  P，， . 

     Let H be the space of square integrable 

complex-valued Bernoulli  functionals, namely 

  )4.2(,,2 PLH   

We denote by , the usual inner product of the space H, and 

by ǁ · ǁ the corresponding norm.  It is known that Z has the 

chaotic representation property, which means that the 

family  |Z forms an orthonormal basis of H, where 
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In the following, we call   |Z  the canonical ONB of H. 

Clearly H is infinitely dimensional since   |Z is 

countably infinite. 

Lemma 2.1. [7] For each Nk , there exists a bounded 

operator 
k  on H such that 

  )6.2(,1 \   kk ZkZ  

where σ \ k = σ \ {k} and 1σ(k) the indicator of σ as a 

subset of N. 

Lemma 2.2.[7] Let Nk .Then k
, the adjoint of operator 

k , has following property: 
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 is called quantum Bernoulli 

noise, while 
k  and k

 are known as the annihilation and 

creation operators, respectively. 

Lemma 2.3. [9] For nonnegative integer n ≥ 0, define 

operators Ln and Rn on H as 
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where I is the identity operator on H. Then both Ln and Rn are 

self-adjoint, and moreover they admit the following 

properties 
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2.2   The QBN-based walk 

Let  HZl ,2 be the space of square summable functions 

defined on Z and valued in H, namely 
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Then  HZl ,2  remains a complex Hilbert space, whose 

inner product 
 HZl ,2

,   is given by 
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where ， denotes the inner product of H as indicated in 

Section 2.1. By convention,we denote by  HZl ,2||||   the norm 

induced by  HZl ,2， .  As usual,  a vector ),(2 HZl  

is called normalized if . 1
),(2 

HZl
 

Deftnition 2.1. [9] The QBN-based walk is a quantum walk 

on Z that satisfies the following requirements 

The state space of the walk is ),(2 HZl  and its states are 

represented by normalized vectors in ),(2 HZl . 

The time evolution of the walk is governed by 

equation
)12.2(0,),1()1()(1   nZxxLxRx nnnnn

 

where ),(2 HZln   denotes the state of the walk at time n ≥ 

0. 

Let  
0


nn be  the  state  sequence  of  the  QBN-based 

walk.That the  function 
2

)(xx n  makes a probability 

distribution on Z, which is called the probability distribution 

of the walk at time n ≥ 0. In particular, 
2

)(xn  is the 

probability that the quantum walker is found at position 

Zx  at time n ≥ 0. 

As usual, the QBN-based walk is assumed to start at 

position x = 0, which implies   that its initial state ）（x0  is a 

localized one,  namely Φ0 is such that 

0)(0  x for Zx with 0x . Thus ）（x0 plays an 

important role in investigating the asymptotic behavior of the 

walk. 

It is well known that HZlHZl  )(),( 22 .  This just 

means that )(2 Zl describes the position of the QBN-based 

walk, while H describes its internal degrees of freedom. By 

convention, H is called the coin space of the QBN-based 

walk. 

Remark.The QBN-based walk has infinitely many internal 

degrees of freedom, since its coin space H is infinitely 

dimensional. 

Lemma 2.4. [9] Let the initial state 
0  of the QBN-based 

walk be such that 
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where C， with 1
22
  . Then, for all n ≥ 1, 
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III. TIME-SERIES MODEL IN TERMS OF THE QBN-BASED 

WALK 

In this section, we construct a time-series model in terms 

of the QBN-based walk, and give several examples to 

illustrate its properties 

Assume that  nn xxxD ,, 21 is a set of real-valued 

time-series data until time n If Dn is given, we want to 

estimate a next time xn+1 using a framework of the QBN- 

based walk with localized initial 

state
,12)0( 0

2

0 ZZ     where  1,0  is the 

parameter. To do so, we introduce the following 

time-dependent evaluation function 
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kx means to sum for all integers from −k to k. 
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Note that, by Lemma 2.4,Φk(x)ǁ2 has the following 

representatio 
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Without loss of generality, we may assume that 00 x .Then 

we can take the following algorithm to estimate xn+1 from the 

given data Dn = {x0, x1, · · · , xn}. 

Step 1. Find a n such that the function )(nV  attains 

its minimum at  n . 

Step 2. For the 

n given in Step 1, compute   1nXE , the 

expectation of theposition Xt of the quantum walker at time 

t = n + 1.  If 

n
  is uniquely determined,then  1nXE  is taken  

as the estimated value of xn+1, namely  11 



  nn XEx . If 

there are some options of 

n , then just put


1nx as the 

average of  1nXE over these choices. If )(nV is a constant for 

any  , then simply put
nn xx 

1
. 

 Step 3. By repeating above procedures, Steps 1 and 2, one 

obtains a sequence of estimated values  

nxxx ,, 21
. 

Example 3.1. The case of n = 0. In this case, we want to 

estimate x1 from the given data D = {x0} with x0 = 0. A 

simple calculation gives 
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Thus, by the algorithm 001  xx , namely the estimated 

value of x1 is 0. 

Example 3.2. The case of n = 1. In this case, we want to 

estimate x2 from the given  data D = {x0, x1} with x0 = 0. By 

a lengthy calculation, we can get the evaluation function as 

follows. 
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where ]1,0[ . We consider three cases: (1) x1 > 

0; (2) x1 = 0; (3) x1 < 0 
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Case (2): x1 = 0. Clearly 11 ）（V for all  .  Thus 

012  xx . 

Case (3): x1 < 0. It is easy to see that 
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similarly, for 11  , we still have E(X2)=0. Thus 
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2 x .Therefore, we get the estimated 

value 


2x   of x2 for all cases. To summarize, we have Table 

1. 

Example 3.3. The case of n = 2. In this case, we want to 

estimate x3 from the given data D = {x0, x1, x2} with x0 = 0. 

Again by a lengthy calculation we can come to 
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where ]1,0[ . We consider three cases: (1) x1 + x2 > 

0; (2) x1 + x2 = 0; (3)x1 + x2 < 0. 
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Similarly, for 12 
 , we still have E(X3) = 0.  Thus 
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2

1
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1
3 x  

Therefore, we have the estimated value 


3x of 3x for all 

cases. For summary, we give Table 2. 
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